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INTRODUCTION

For many years, biologists have measured the
infectiousness of microorganisms by recording
the percentage of hosts that respond as a func-
tion of challenge dose (the quantal response). In
studies on viruses and carcinogenic agents, the
time interval between treatment of a host and
the appearance of a detectable reaction has also
been widely employed (the graded response).
To evaluate quantal or graded responses effi-
ciently, it is desirable to describe the relations
between dose and response in mathematical
terms. In this review, we describe and discuss
two mathematical models: the independent-ac-

1 Present address: Eye Research Foundation of
Bethesda, Bethesda, Md.

tion model, which is concerned with the prob-
ability of response as a function of size of dose in
quantal-response studies, and the birth-death
model, which analyzes the distribution of re-
sponse times as a function of dose in graded-re-
sponse studies. The two models are consistent,
and their joint use gives the capability of relating
quantal and graded responses.

In this review, we discuss the simple-ex-
ponential response-probability function that
follows from the independent-action assumption
when hosts are homogeneous and receive identical
treatment. Following a suggestion of Armitage
(2), we show how host heterogeneity can be
identified by plotting response percentages on a
so-called Weibull scale. A representative group of
experimental data was analyzed by the Weibull
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procedure, and effects of host age, host strain,
and route of inoculation or response probabilities
were examined. We concluded that the Weibull
analysis of biological-response data is much more
meaningful than the more common probit analy-
sis, and will in many cases serve to divide the
hosts into susceptible and resistant groups and
give separate IDs values for these groups. It is
recommended that the Weibull type of analysis
of response probabilities be more widely used.

In the section of this review dealing with the
independent-action model, the only assumption
made is that the organisms act independently.
From this assumption alone, one can obtain in-
formation on the probability of response as a
function of dose, but one can obtain no informa-
tion on the distributions of time to response as a
function of dose. To the independent-action as-
sumption is added, in the section on the birth-
death model, the simple assumptions of the
“birth-death” model regarding the course of the
infection. These assumptions are that, during the
entire period before response, the conditions that
govern the probabilities of organism fission
(birth) and of organism death remain constant,
independent of time and of the number of or-
ganisms. During this period, as a result of chance,
either all organisms will disappear or the number
of organisms will grow to a certain very large
size, N, at which time response is assumed to
occur with the appearance of an observable symp-
tom. The mathematical treatment of this model
of birth and death, in the papers by Saaty (50)
and by Shortley (52), gives results that describe
the frequency distribution of response times and
its dependence on challenge dose; these results
are quoted herein. Curves are given that show
the predicted frequency distributions of time to
response, the mean or average time to response,
the standard deviations of the distributions and
their skewnesses, all as functions of the size of
initial challenge dose relative to the 1pso. It is
shown how to analyze experimental data for
comparison with the predictions and for deter-
mination of the basic parameters of the model.

The predictions of the birth-death model are
compared with the experimental data in some
detail. A comprehensive table is given that shows
the exponential growth-rate parameters and the
values of N for a large set of experimental data
obtained by measuring average time to response
as a function of dose. The effects of organism and
site heterogeneity are then discussed, and it is
shown that these effects are in general so signifi-
cant that it is usually impossible to derive from
the data meaningful individual values of A, the
growth probability per unit of time, and of x, the
death probability per unit of time, but that one
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can only obtain their difference, A — u, which
gives a, the average exponential growth rate. A
comparison with naturally occurring respiratory
disease in the case of Q fever is presented, and
demonstrates that the natural disease results
from a very minimal dose. It offers the hypothesis
that other natural respiratory infections also
result from minimal doses and that this fact ac-
counts for the rather well-defined minimal in-
cubation periods that are observed.

In conclusion, certain avenues of approach to
the problem of identifying factors that influence
susceptibility and resistance are suggested. In-
vestigations of basic defense mechanisms asso-
ciated with susceptibility in a heterogeneous host
population are discussed. It is pointed out that
the Weibull type of analysis in a heterogeneous
population leads to the possibility of making
individual host measurements prior to inocula-
tion, carefully labeling the hosts and, after
challenge, correlating the response with the
measured host characteristics. Another approach
to investigating basic defense mechanisms is
based on the observation that young animals re-
spond homogeneously and older ones hetero-
geneously, especially to viral diseases; research.
programs are suggested which involve correlating
biochemical, physiological, and anatomical
changes in the developing chick embryo with
information about the pathogen, in an attempt to
relate age with susceptibility. It is also suggested
that tissue-culture systems be explored for their
use in dose-response studies and as a tool for
studying basic defense mechanisms.

INDEPENDENT-AcTION MODEL:
PROBABILITIES OF RESPONSE

The predictions of the independent-action
model have been occasionally, but not generally,
used in the analysis of the probability of biological
response as a function of size of dose.

After inoculation of a host with microorgan-
isms (or viral particles), there is a period during
which it is determined whether the number of
particles is to grow to a large size, with a result-
ing response, or whether the organisms will all
die, with no response. The independent-action
model assumes that, during this “decision”
period, the organisms (or viral particles) act in-
dependently of each other, each organism having
a certain probability of causing infection. The
total probability of infection from a given dose
is then obtained by statistical combination of the
probabilities for the individual organisms.

We shall describe in some detail the results
of the independent-action assumption. We find
that all of the data on biological-response prob-
abilities, with the possible exception of certain



104

host-parasite systems requiring “overwhelming”
doses to secure response, seem to be consistent
with the hypothesis of independent action.

The first complete treatment of response prob-
abilities under the assumption of independent
action, with homogeneous and heterogeneous
hosts and organisms, and with Poisson distribu-
tion of challenge-dose size about an expected dose
d, was given by Fazekas de St. Groth and Moran
(21). The basic formulas given below for response
probability as a function of dose are derived from
this work.

From the assumption of independent action
it follows that, if all hosts are identical and re-
ceive identical treatment, there will be a definite
median infectious dose (1pso), which we call dy,
and a simple-exponential relation between the
probability, R, of response and the expected
dose, d:

R =1 — ¢0:691dp) (homogeneous hosts) (1)

where 0.69 = log. 2, the natural logarithm of 2.
It is this factor that adjusts the exponent so
that when d = do, R = 0.5, in accordance with
the definition of dy as the dose required to infect
509% of a host population. In equation I, the
dose d is the average dose given to a sample of
hosts to determine the fraction of hosts respond-
ing. With the usual experimental technique, the
actual dose will vary from host to host and have
a Poisson distribution about the average dose d.

The simple-exponential form (I) applies
whether or not the organisms are identical in
strain or virulence and whether or not the organ-
isms land at equally receptive sites in the host.
All that is required for equation I to apply is
that the hosts be identical and receive identical
treatment.

A plot of equation 1, with the fraction R on a
percentage scale and d/dy on a linear scale, is
given in Fig. 1. The same curve is plotted in
Fig. 2 with the more usual logarithmic scale for
d/d,. Figure 2 also shows an example of data
that conform excellently to the exponential dose-
response relation. The data are from an experi-
ment by Bang (3) on the probability of death
of chick embryos injected with Newcastle disease
virus. (The curve in Bang’s Fig. 1, from which
the data in our Fig. 2 are taken, is believed to be
plotted ‘“backward,” with the longer tail at high
doses rather than at low. This error has been
corrected in our plot, to which the experimental
data conform even more closely than in Bang’s
plot.) Confidence limits (50%) are shown in Fig.
2 and succeeding response plots. There is at
most a 259%, chance that the true response prob-
ability would be below the lower confidence
limit and at most a 25% chance that it would be
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above the upper limit; there is at least a 509,
chance that it would fall between these limits. A
convenient table of these confidence limits is
given in the Appendix of this review.

Figure 3 shows still a third way of plotting the
curve given by equation I, this plot being on
“probit” paper. Response probabilities are fre-
quently plotted on the probit scale, with the
curve of probit vs. log dose approximated by a
straight line. The “probit slope” is defined as the
increase in probit for each 10-fold increase in
dose. As shown by the dashed tangent line in
Fig. 3, the exponential response curve has a probit
slope of 2.003 at the 509, response point.

Rather than using a probit scale, for which the
response function (1) is actually a curved line,
it is convenient to plot response probabilities
on a scale, called the Weibull scale, for which
the simple-exponential curve reduces to a
straight line. This reduction is accomplished by
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Fig. 1. Exponential dose-response probability.

plotting logio [ —log. (1 — R)] against dose (on
a log scale), as in Fig. 4, which also shows the
values of R itself on the left-hand scale. Figure 4
duplicates the curve and the data shown on Fig. 2.

The simple-exponential response-probability
curve plots, on the Weibull scale of Fig. 4, as a
straight line of such slope that the ordinate
given by the right-hand scale increases by one
unit for each 10-fold increase in dose. For ex-
ample, for the straight line of Fig. 4, the ordinate
increases from —1.16 at d/dy = 0.1 to —0.16 at
d/dy = 1. We shall say that such a line has
“unit slope.”

Maximal Response Probability and
Minimal Dose

Figure 5 shows another curve of response
probability that indicates complete host homo-
geneity because it plots as a straight line of unit
slope on the Weibull scale. The data in Fig. 5
refer to serological response to intraperitoneal
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injection of Coziella burnetii in guinea pigs, and
are from a paper by Tigertt et al. (55).

In the similar plot of Fig. 4, the dosage scale
is given as the ratio d/do, the actual numbers of
virus “particles” being undetermined. In the case
of Fig. 5, it was possible to count the rickettsial
particles, at least approximately, and doses are
given in numbers of organisms. The reference
states that “the findings are compatible with the
belief that . . . a single particle . . . is capable of
initiating infection.” Hence, the do given by
Tigertt et al. is 0.69 organisms, which is the
average number of organisms in a quantity of
inoculum that has, according to the Poisson dis-
tribution of actual numbers of organisms, exactly
509, probability of containing one or more or-
ganisms and 509, probability of containing no

INDEPENDENT-ACTION AND BIRTH-DEATH MODELS

105

faults in titration technique, or mistakes as to the
cause of infection.

We should also point out that, while the form
of the response curve in Fig. 5, where any single
organism will cause response, is easily derived by
computing the probability that the inoculum
contains at least one organism, a response curve
of the same form (a simple exponential) is ob-
tained, as in Fig. 4, from the independent-action
model for the case of a median infectious dose dg
of any size whatsoever. One must not jump to the
conclusion, as has been done occasionally in the
viral literature [see, for example, references (12)
and (44)], that, because a response in the form of
a simple exponential function of d/d, is obtained,
the virus is particulate in nature and a single
virulent virus particle in the inoculum is certain
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Fic. 2. Percentage of deaths in chick embryos infected with Newcastle disease virus. Confidence limits

(60%) are shown on this and succeeding figures.

organisms. If any one inoculated organism causes
infection, half the hosts will become infected
when the average number of organisms in the
inoculum is 0.69.

Furthermore, the straight line in Fig. 5, whose
equation as a function of dose d is

R

is just the probability that a quantity of in-
oculum, of average dose d, would contain at least
one organism. Since at least one organism must
be actually inoculated to cause infection, the
response probability cannot be above this line
under any assumption. We emphasize this state-
ment because we occasionally find in the data
impossible response probabilities, lying well
above this curve. We also occasionally find values
given for 1Dz that are substantially below 0.69
organisms. Results of this type should be recog-
nized to represent either errors in bioassay,

1 — g0:69d10.69) — 1 _ g4

to cause response. The conclusion that the ex-
ponential form is evidence of certainty of infec-
tion by any one particle is entirely erroneous.

Effect of Host Heterogenetty

If independent action is assumed, it can be
shown that the only type of heterogeneity that
can cause departures from the simple-exponential
response-probability curve of Figs. 1 to 5 is
heterogeneity among hosts. If all hosts are identi-
cal, there will be a definite median infectious
dose (do) and an exponential dose-response func-
tion (1) no matter how heterogeneous the or-
ganisms may be in the inoculum or how hetero-
geneous may be the sites at which various or-
ganisms find themselves in the host—provided,
of course, that the same inoculum is used for all
hosts and that identical inoculation procedures
are used.

If, however, the hosts differ in susceptibility,
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such that a fraction o; of the hosts requires a
median infectious dose d;, a fraction a. requires
ds, a fraction as requires d;, etc., the response-
probability formula corresponding to equation 1

o
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Fic. 3. Ezxponential dose-response probability
plotted on probit paper.
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becomes
R =1 — ;e 0-69did) _ ,0—0.69(didy) 0)
— oz 0-69(didy) ... ,
where, of course,
o+ +az+ -0 =1 3)

Let us first illustrate the behavior of the com-
plex relation (2) by a simple example in which

SHORTLEY AND WILKINS

BacteRIOL. REV.

the host population falls into just two groups, one
highly susceptible and one highly resistant. Let
us assume that 209, of the hosts have a median
infectious dose of 1 organism, whereas the other
809% have a median infectious dose of 10°% or-
ganisms; that is, we assume

ay = 0.20, dl = 1;
a = 0.80, dy = 10%.
The response probability is then
R =1 — 0.260-69dm) _ () 8g—0-69(d/10%) “4)
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Fia. 5. Percentage of serological responses in
guinea pigs infected intraperitoneally with Coziella
burnetis.

The values of R as a function of d are readily
computed by reading the values of the ex-
ponentials from the right-hand scale of an ac-
curate plot like that in Fig. 2. The resulting curve,
plotted on a Weibull scale, has the form shown
in Fig. 6.

If one finds a response-probability curve of the
general form of that in Fig. 6, it is readily possible
to work backward to estimate the values of the
parameters @i, as, di, and ds.. The following
method was described by Armitage (2). We note
first that there is a ‘“‘shelf”” at the 209, response
level. The height of this shelf determines oy =
0.20, the fraction of hosts that are “susceptible.”
We then find a; = 1 — oy = 0.80, the fraction of
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“resistant” hosts. We notice next that at both
high and low doses the curve becomes asymptotic
to straight lines of the same slope as the straight
line given in Fig. 4 for the simple-exponential
response. From the points (marked by bars in
Fig. 6) at which these straight lines cross the
509 response level, we can estimate d; and ds.
The value of ds is given directly by the bar on
the right-hand asymptote, which is at d» = 105,
The value of d; is not given directly by the bar
on the left-hand asymptote. If we denote the
position of the bar by d’, we see that d’ = 5 in
Fig. 6. From the value d’, the value of d, is

INDEPENDENT-ACTION AND BIRTH-DEATH MODELS

107

We have been particularly struck by the large
number of cases in which there is evidence of
strong host heterogeneity but in which the hosts
fall into just two groups, each with a clearly
defined median infectious dose. As an example,
we plot in Fig. 7 unpublished data, obtained
from Ralph E. Lincoln, on percentage response to
anthrax spores injected intraperitoneally in
mice. These data fit excellently the response
function

R =1 — (0.65¢—0-69(d25
— (.35¢0-69(d/2.5x104)

6

determined by the relation d; = a;d’ = 0.20 X
5 = 1in our example. which indicates that 659 of the hosts have
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F1a. 6. Hypothetical example with two groups of hosts.

The above procedure is summarized as follows.
(i) When the response-probability data, plotted
on a Weibull scale, can be approximately repre-
sented by a shelf and two asymptotes of unit
slope, the two-group formula

R =1 — e 0-9@id) _ ,g—0.69(d1d2) ()
should be applicable. (ii) The value of a; is given
by the response R at the height of the shelf. (iii)
The value of o, is given by 1 — a;. (iv) The value
of d, is given by the dose at which the right-
hand asymptote crosses the 509, response level.
(v) If we denote by d’ the dose at which the left-
hand asymptote crosses the 509, response level,
the value of d, is given by d; = ayd’. (vi) As a
final step, the curve (5) should be computed and
plotted, and adjustments should be made in the
parameter values if required to improve the fit
to the data.

di = 25 organisms, and the other 359 have
d» = 2.5 X 10* organisms.

Many laboratories have characteristically been
subjecting their response data to a “probit”
analysis. In a paper by Lincoln and DeArmon
(35), the remark is made that, “In most of the
quantal response bio-assays conducted in our
laboratory, the average probit slope equals ap-
proximately 1.0 . . . Meynell claims that with an
entirely uniform strain of animal the probit slope
should approach 2.0.” The last statement is only
partially true. The line shown in Fig. 2, when
plotted on probit paper, gives the curve of Fig. 3,
which does not have the form of the straight line
assumed in probit analysis, and which has the
slope 2.0 only at the 509, point.

If the data of Fig. 7 are replotted on probit
paper, we get the points shown on Fig. 8. If this
plot is subjected to the usual probit analysis,
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by use of a linear regression, we would find a
probit slope of 0.7 and a median lethal dose of
250 organisms. However, the fit of the points to
the straight line in Fig. 8 is not nearly so good as
the fit to the curve in Fig. 7, and the evidence for
two host groups is very strong, even in the de-
partures of the observed points from the line in
Fig. 8. If one accepts the two-group characteriza-
tion, the median dose of 250 organisms does not
characterize any of the individual hosts, but is
merely a type of average characteristic of the way
in which the population is distributed between
sensitive and resistant hosts.

Our examination of a considerable body of
response-probability data convinces us that the
Weibull analysis (as in Fig. 7) is much more
meaningful than probit analysis (as in Fig. 8),
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60 — 11 = 499, would seem to have d; in the
neighborhood of 2 X 109, the dose where the
center slant line intersects the 509, response
level. Finally, from the position of the right
asymptote, we have d; = 2 X 107 organisms for
the most resistant group, comprising the re-
maining 40% of the hosts. As a trial, then, we
take

a; = 0.11, a = 0.49,
di =102 d; =2 X 108,

and compute the response curve

R =1 — 0.11¢0-69(dsd)
— 0.49¢0-69(dr210x8) 0
- 0.406-0~69(d/zx107)

az = 040,
ds =2 X 107,

This curve, shown by the broken line in Fig. 9,
fits the data within the accuracy of the experi-
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F1g. 7. Percentage of deaths in mice infected
intraperitoneally with Bacillus anthracis.

and will in many cases serve to divide the hosts
into groups and give separate Ips values for
these groups. It is strongly recommended that
the Weibull type of analysis be more widely em-
ployed.

Figure 9 shows an example from Meynell and
Meynell (40) of response data that cannot be
fitted on the assumption that there are only two
host groups; these data require three groups to
get the satisfactory fit shown by the broken
curve. It appears from an examination of these
data that there are two shelves—one at about
119, response and one at about 609, —as in-
dicated by the straight horizontal lines. We
therefore assume that a; = 119, of the hosts are
highly susceptible, with d; < 10? organisms (the
position of the left asymptote is undetermined
but we must have d’ < 10% and hence d; = aud’ =
10?). The next group of hosts, comprising o, =

DOSE IN ORGANISMS e
F1a. 8. Probit response plot for the data of Fig. 7.

which seems to be definitely inconsistent with
the remainder of the data. The data of Fig. 9
would probably be equally consistent with the
assumption that there are only two groups of
hosts but that the resistant group is itself some-
what heterogeneous, with median lethal doses
spread over a range from about 2 X 10% to 2 X
107.

For the data of Fig. 9, Meynell and Meynell
give the median lethal dose as 3.2 X 10° or-
ganisms, a value which fairly well describes the
resistant hosts but completely overlooks the
definite existence of about 119, of much more
sensitive hosts.

Demonstration of Host Heterogeneity

A very interesting experiment performed by
Parker et al. (44) confirms the conclusion that
departures from the simple-exponential response
curve are an indication of host heterogeneity. In
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this experiment, six rabbits were inoculated
simultaneously with vaccinia virus, 10 inocula-
tions being made in each rabbit with each dilu-
tion. For the pooled rabbits, the response (lesion)
percentages are given in Fig. 10. The authors note
that these data do not fit a simple-exponential
curve. However, the authors showed that the
data for each individual rabbit fit a simple-
exponential curve with statistical significance.
They found the rabbits to vary in susceptibility,
and obtained the following log dilutions for the
D5 values for the six individual rabbits: —5.29,
—5.13, —4.86, —4.84, —4.84, —3.49. The rabbits
thus fall approximately into three groups: 33.3%
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distribution of host susceptibility rather than to
a clear-cut division into discrete groups. Figure
11 gives examples of the forms of the response
curves that result when host susceptibility is
continuously distributed. For curve A, the values
of log do are uniformly distributed over dose
levels covering 1 log; for curve B, median doses
are distributed over 2 logs; for curve C, over 3
logs. These distributions of median infectious
dose are indicated at the bottom of the chart.

If = is the relative dose, and the log median
infectious dose of the host population is uni-
formly distributed from log z = 0 to log z = n,
corresponding to (nonuniform) distributions of

with d; = 10752 = 6.2 X 1075, 50.0% with d» = the relative median infectious dose itself from
107485 = 1.4 X 1075, 16.7% withd; = 10734 = =z = 1 to z = 107, the response probability can
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Fi1a. 9. Percentage of deaths in mice infected intraperitoneally with Salmonella typhimurium. Experiments

2 and 3 of Meynell and Meynell (40).

3.2 X 1074 For this grouping, the overall dose-

response probability is given by (see equation 2):
R =1 — (.333¢0-69(d/6.2x105)
—0.500¢—0-69(d/1.4x10-5)

— 0.167¢—0-69(ds3.2x10—4)

(8)

A plot of this curve gives the satisfactory agree-
ment with the pooled data that is shown by the
points on Fig. 10. Thus, in this case we are able
to explain the complex character of the response-
percentage curve by building it up from data on
the individual hosts.

Continuous Dastributions of Host
Susceptibility

Response-probability curves are sometimes
observed that could correspond to a continuous

be computed from the formula

0434 .
R=1- - [E7(—0.693z) o)

— Ei(—0.693 X 102)],

where 0.434 = logye; 0.693 = log. 2; and E7 is
the logarithmic integral. The integral Ei(—y)
was tabulated by Jahnke, Emde, and Lésch in
Tables of Higher Functions (p. 23) for values of
y down to 0.01; for smaller values of ¥, one can
use the approximation

Ei(—y) ~loge.y + 0.577
= 2.30 logw y + 0.577

where 0.577 is Euler’s constant.
A series representation of 9, particularly useful

(10)
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for small values of z, is

- O'Lng"* {(0.693:::)(1 ~ 109
(0.693z)? .
— g (=107 (11)
(0.693z)3 -
+ 3‘3! (1_10 )3_ }

From the first term of this series, it can be shown
that the left asymptote, indicated by a dashed
line in Fig. 11, has unit slope and passes through
the 509 ordinate at ¢ = n(1 — 10™)/0.434. For
the cases n = 1, 2, 3, illustrated in Fig. 11, these
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F1a. 10. Percentage of lesions in rabbits infected
intradermally with vaccinia virus.

509, points for the asymptotes are at x = 2.56,
4.65, and 6.92, respectively, as indicated by the
short bars.

Figure 12 gives an example, from work of
Marshall and Gerone (39), of the type of data
that can be represented by a continuous median-
dose distribution, in this case extending over 3
logs. However, within the accuracy of the ex-
periment, these data could as well be represented
by two discrete groups and a shelf at about 65%.
Because of the observed continuous increase of
median dose with age, it is biologically reason-
able to favor the continuous distribution in this
case, as will be discussed later.
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Effects with “Overwhelming” Doses

The nature of equations 2,.9, and others that
correspond to different host-sensitivity distribu-
tions is such that the slope of the curve, when
plotted on a Weibull scale, can never be greater
than unity. This statement can be rigorously
demonstrated. Occurrence of a part of the curve
with greater than unit slope can only arise from
cooperative, rather than independent, action.

In a few cases, we have observed dose-response
curves which, on a Weibull plot, have slopes
significantly greater than unity. Figure 13 shows
an example from the work of Pike and Macken-
zie (45) on Salmonella typhimurium injected
intraperitoneally in a very homogeneous strain
of Swiss mice. The agent was a TMO strain of low
virulence. Blood counts and other evidence
indicate that, with inoculations of 10° of fewer
organisms, the count almost invariably decreases
to zero after about 24 hr, whereas the number of
organisms in inocula of 10® or more shows ap-
proximately the same growth pattern as a viru-
lent strain that has median lethal dose of two
organisms. In Fig. 13, there is a strong indication
of a very steep rise in the region near 8 X 10°
organisms. The evidence is strengthened by the
fact that the experiments at 8 X 10% and at 10°
organisms were performed with 50 animals each
and have very narrow confidence limits.

In these experiments, there appears to be a
critical dose below which the organisms cannot
grow, but above which the organisms have nor-
mal virulence, with growth to a total of ap-
proximately 10° to 10'° organisms at death.
Such a situation would not, of course, represent
independent action, and one would not expect
response probabilities in agreement with the in-
dependent-action model. Perhaps host defenses
are “overwhelmed’” by the large number of or-
ganisms in the inoculum, or by some toxic charac-
teristic in the inoculum. It is noted that response
probabilities for toxic chemicals characteristi-
cally give curves with slopes much steeper than
those for biological agents.

Influence of Various Factors on Response
Probabilities

This section will give examples of the dose
dependence of observed response probabilities,
and show how host response may be influenced
by route of inoculation, host strain, age of host,
and pathogen strain.

All of the curves in this section are fit-of-eye
approximations. Ideally, these curves should be
accurately computed and plotted, and adjust-
ments should be made in the parameter values if
required to improve the fit to the data. However,
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for the purpose of demonstrating the effects of
various factors on dose response, even a rough
fit of the independent-action model is usually
adequate. Confidence limits (509) are shown
along with the data points.

Route of tnoculation. The study by Dutton
(17) is the source of data for the following analy-
sis of the effect of route of inoculation on re-
sponse probabilities. In Dutton’s study, albino
mice of the Parker strain were inoculated intra-
peritoneally, subcutaneously, and intravenously
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geneous. Although the dose-response data are
meager, the Lps was estimated to be about two
organisms by either route, a value close to the
minimum possible. However, for mice challenged
via the intravenous route, Fig. 16 shows a quite
different behavior, in that the hosts clearly fall
into two groups. A shelf extending across about
4 logs is apparent at about the 559, level. Ap-
proximately 559 of the hosts are susceptible,
with d; of about 50 cells. The position of the
upper asymptote gives a value of d» of about
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F1a. 11. Dose-response probabilities for continuous distributions of host susceptibility.

with eight genera of pathogenic bacteria. In
most cases, 10 mice were used for each dose level
and each route, and mortality percentages were
recorded. For five of the organisms, the Lpj
data, obtained by the methods previously de-
scribed, are summarized in Table 1.

As an example, the plots of mortality per-
centages for Streptococcus pneumoniae inoculated
by the three routes are presented in Fig. 14 to 16.
When mice were challenged by either the intra-
peritoneal or subcutaneous routes, S. pneumo-
niae was very lethal. Figures 14 and 15 indicate
that the host was extremely sensitive and homo-

8 X 10° organisms for the 459, of hosts that are
resistant. These results are not open to an obvious
explanation; one can only speculate as to possible
mechanisms of action.

For all of the agents except S. pyogenes, the
host reactions to subcutaneous inoculation are
very similar to the reactions to intraperitoneal
inoculations, but, in the case of S. pneumoniae
and 8. typhtmuritum, the reactions to intrave-
nous inoculation are very different from these
(Table 1).

Dutton’s data demonstrates not only that
the route of challenge can strongly influence the
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median lethal dose, but that hosts that respond
homogeneously to challenge by one route can
respond very heterogeneously to challenge by
another.

Host strain. Various host factors might be ex-
pected to influence the character of the response
to a given organism. We shall give here an ex-
ample illustrating the effect of strain of host, and
in the next section we shall consider the effect of
age of host.

A good example of the effect of host strain is
included in the work of Pike and Mackenzie
(45). These authors studied the same strain of S.
typhimurium inoculated intraperitoneally in
two strains of mice: one pure-bred and expected
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was heterogeneous, with 609 of the hosts having
a d; ~ 6 organisms and 409 having a dy ~
40,000 organisms (Fig. 18).

This experiment illustrates that the deliberate
introduction of a genetic host heterogeneity
can result in strong response heterogeneity.
The evidence indicates that the hosts fall into
two clear-cut groups. Why, in this and many
other cases, one finds just two levels of suscep-
tibility, rather than a more continuous dis-
tribution, remains unexplained.

Age of host. It has been known for some time
that age of the host at the time of challenge
markedly influences response. We shall give two
examples from the literature which show that
the characteristic increase in resistance with
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F1g. 12. Percentage of deaths in suckling mice 3
to 6 days old infected intraperitoneally with variola
virus.

to react homogenously; the other deliberately
crossed to obtain possible heterogeneity. The
results obtained were exactly as anticipated.

The pure-bred Swiss mice were obtained from
a breeder who maintained a large inbred colony.
The other strain was obtained by crossing a
Swiss doe with a wild brown buck and breeding
the offspring with Swiss mice. The white offspring
were inbred for two generations.

The mortality percentages are summarized in
Table 2. Plots of the mortality data are pre-
sented in Fig. 17 and 18. The response of the
pure-bred Swiss mice was at least 999, homo-
geneous. These mice were highly susceptible,
with dy ~ 3 organisms (Fig. 17). On the other
hand, the response of the Swiss-brown cross
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Fic. 13. Percentage of deaths in Swiss mice in-
fected intraperitoneally with Salmonella typhi-
murium of low virulence.

age is generally accompanied by a marked hetero-
geneity of response during the transition period.

The above-mentioned heterogeneity is con-
spicuous for extraneural inoculation of certain
neurotropic viruses in mice; in these instances,
young suckling mice are very susceptible and
older mice are resistant. In a carefully designed
study, Lennette and Koprowski (33) determined
the manner in which age influences the suscep-
tibility of mice to infection with nine neurotropic
viruses. In this study, albino Swiss mice of vari-
ous ages were challenged by the intraperitoneal
and intracerebral routes. For both routes, mice
of various ages were inoculated with the same
virus preparation. Each virus dilution was tested
in a group of six mice. In many cases, more than
one such group was tested at each dose level.
Death was the recorded end point.

Mice of all ages were found to be very sensi-
tive to intracerebral challenge of all neurotropic
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viruses, and there was no significant diminution
of sensitivity with increasing age.

In contrast, sensitivity to intraperitoneal
inoculation was found to decrease strongly with
age for the five viruses listed in Table 3. In the
case of Venezeulan equine encephalomyelitis,
the mice remained very sensitive to intraperi-
toneal challenge at all ages. For the five cases
where age sensitivity was observed, Table 3
gives the percentage of hosts having various
median lethal doses; these percentages were
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quired median dose. At 21 and 28 days of age,
host heterogeneity was very evident, but with
an increasing percentage of the animals becoming
very resistant. By the age of 42 days, the mice
were all very resistant to the virus. The general
pattern of host response established by St.
Louis encephalitis virus is also observed for the
other viruses. When the hosts were inoculated
intraperitoneally with West Nile and Japanese
B encephalitis viruses, the departure from
homogeneity came when the hosts were 21 days

TaBLE 1. Effect of route of inoculation on median lethal dose for various pathogenic bacteria

Route of inoculation

Organism
Intraperitoneal Subcutaneous Intravenous
Streptococcus Homogeneous Homogeneous 55%, d1 ~ 50
pneumoniae do ~ 2 do~ 2 45%,, d» ~ 800,000
Streptococcus pyogenes Homogeneous 25%, d1 < 10 Homogeneous
do ~ 300 75%, dz2 ~ 4,000 do ~ 500
Salmonella 50%, d1 ~ 1,000 30%, d1 ~ 600 Very resistant
typhimurium 50%, d: ~ 300,000 70%, d2 ~ 200,000 do > 108
Bacillus anthractis 80%, d1 ~ 40 80%, d1~ 8 95%, di ~ 60
20%, d2 ~ 8,000 20%, d2 ~ 1,000 5%, d2 ~ 2,000
Erysipelothriz 50%, d1 ~ 10 35%, d1 < 10 30%, d1 < 10
rhusiopathiae 50%, d2 ~ 3,000 65%, d: ~ 600 70%, d: ~ 800
' 9 f 9
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Fi1a. 14. Percentage of deaths in mice infected
iniraperitoneally with Streptococcus pneumoniae.
(Compare with Fig. 156 and 16.)

obtained from Weibull plots like that shown in
Fig. 19.

In all cases, 8-day-old mice were highly sus-
ceptible and gave a homogeneous response when
challenged by the intraperitoneal route with
neurotropic viruses. Depending on the par-
ticular virus, host heterogeneity appeared at 14,
21, or 28 days of age.

In the case of St. Louis encephalitis virus,
host heterogeneity appeared when the mice
were 14 days of age, at which age 759, of the
animals had developed a 3-log increase in re-

DOSE IN ORGANISMS gy

Fia. 15. Percentage of deaths in mice infected
subcutaneously with Streptococcus pneumoniae.
(Compare with Fig. 14 and 16.)

old (Fig. 19). For Western and Eastern equine
encephalomyelitis, host heterogeneity appeared
at 28 days of age.

The data presented here clearly indicate the
influence of age on host homogeneity or hetero-
geneity with neurotropic viruses, and show the
shift to a high percentage of resistant animals
with increasing age. Finally, this analysis offers
an explanation for Lennette and Koprowski’s
statement that, “with increasing age death oc-
curred so irregularly that calculation of a 50-
percent end point was not warranted, or if cal-
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culated, its accuracy was questioned.” The ex-
planation for this statement rests with the fact
that, with increasing age, the hosts become het-
erogeneous and divide into two groups, one
susceptible and one resistant. The determination
of the Lps for this type of data by any of the
conventional techniques, e.g., the Reed and
Muench or probit techniques, which do not
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is from a different titration of the same parent
inoculum and should be directly comparable
with the other 8-day data. Both sets of data are
plotted in Fig. 20, and the combined data were
used in the Wibull median-dose determination.
Table 4 shows a rapid increase of median
lethal dose as the hosts age from 6 to 9 days.
The host response is essentially homogeneous,
except for 8-day hosts. Remarkably, at 8 days

99 - 7 of age, about 209, of the hosts develop a specific
e E 7 ! / sensitivity such that, to a good approximation,
80 . / any one organism in the inoculum will cause
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F16. 16. Percentage of deaths in mice infected in-
travenously with Streptococcus pneumoniae. (Com-
pare with Fig. 14 and 15.)

TaBLE 2. Mortality percentages of mice after
intraperitoneal injection of Salmonella

typhimurium
Strain of Dose No. of Per cent
mice (organisms) animals mortality
Swiss 7 25 84
102 25 100
103 250 98.5
10° 25 100
107 25 100
Swiss-brown 10 25 40
cross 108 50 62
1 50 92
10¢ 25 100

identify host heterogeneity, is probably of little
value.

Another example of the influence of host age
on response is found in the studies by Roessler
et al. (49) on the virulence of Coccidioides immatis
inoculated by the yolk-sac route in embryonated
eggs. The percentage mortalities for embryos of
various ages are summarized in Table 4.

Two sets of data are given in Table 4 for 8-day
hosts. The first set is from the same titration as
the data for hosts of other ages. The second set

Fig. 17. Percentage of deaths in Swiss mice in-
fected intraperitoneally with Salmonella typhimu-
rium. (Compare with Fig. 18.)
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Fig. 18. Percentage of deaths in Swiss-brown-
cross mice infected intraperitoneally with Salmo-
nella typhimurium. (Compare with Fig. 17.)

death. One would suspect the validity of this
conclusion were it not indicated by each titration
independently, as well as by the combined 8-day
data.

It is suggested that the specific sensitivity indi-
cated by these data of Roessler et al. be subjected
to additional verification. If found to be correct,
embryologists may be able to find clues, from
the embryo-development pattern, as to the par-
ticular host factor that causes this sensitivity.

Pathogen strain. The strain of pathogen fre-
quently influences the character of response-
probability functions. As an example, the study
of Donovan et al. (16) compares the response of
guinea pigs to encapsulated and nonencapsu-
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lated strains of Pasteurella pestis. In this study,
the virulent MP-6 strain and its nonencapsu-
lated mutant strain M-23, grown under similar
conditions, were inoculated intradermally in
the flanks of Hartley-strain guinea pigs, with
the lethal response summarized in Table 5.
Plots of the data in Table 5 are given in Fig.
21 and 22. In general, the MP-6 encapsulated
strain is more virulent than the M-23 when
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strain as 1.2 organisms and for the M-23 strain
as 4,500 organisms.

Validity of the Exponential Response-Probability
Function

Aside from a few cases that seem to depend on
cooperative action with overwhelming doses of an
organism of low virulence, such as the case dis-
cussed in connection with Fig. 13, all of the data

TABLE 3. Influence of age on the response of mice to intraperitoneal challenge with certain
neurotropic viruses

Age

i ! Median lethal dose expressed in terms of dilution

(days) Virus
107°-10® | 102-107 | 10"-10° | 107%-10-° | 107%-10~* | 10~*-10~* | 10~%-102 |10~%-107' | >107!
8 i St. Louis 100*
14 | encephalitis 25 75
21 65 35
28 20 80
42 100
8 West Nile 100
14 virus 100
21 55 45
28 20 80
42 40 60
8 Japanese B 100
14 encephalitis 100
21 80 20
28 50 50
42 25 75
8 Western equine| 100
14 encephalo- 100
21 myelitis 100
28 40 60
42 55 45
8 Eastern equine | 100
14 encephalo- 100
21 myelitis 100
28 40 60
42 30 70
56 100
200 100

* Percentage of hosts with indicated lethal doses.

injected by the intradermal route in guinea pigs.
As shown in Fig. 21, the guinea pigs were homo-
geneously sensitive to the MP-6 strain, with
de ~ 3 organisms. In contrast, in response to
the nonencapsulated M-23 strain, the hosts
divided into two groups as shown in Fig. 22;
359, were sensitive with d; ~ 20 organisms and
659 were resistant with d» > 2 X 10° organisms.
Using the Litchfield and Wilcoxon method,
Donovan et al. estimated the Lps for the MP-6

we have examined are consistent with the inde-
pendent-action model. The response-probability
curve is either a simple exponential, a two-group
exponential, or a more complex shape, but never
has slope greater than unity when plotted on a
Weibull scale. This statement applies to inocula-
tions by all appropriate routes. It applies to
responses of all types, including the growth of
warts and tumors. It applies not only to infec-
tions by viral agents, rickettsia, and bacteria,
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but to mycotic agents, tumor cells, and trypano-
somes. It applies to all types of hosts, including
tissue cultures.

We have found many response-probability
curves that closely approximate the simple-
exponential form, indicating complete or almost
complete host homogeneity. Where heterogeneity
is apparent, the hosts are divided, in a remarkable
number of cases, into just two groups, as illus-
trated by various examples in this review. One
case of an apparently continuous distribution of
sensitivity, already illustrated in Fig. 12, occurs
in the experiments of Marshall and Gerone (39)
on intraperitoneal inoculation of variola virus in
suckling mice. Newborn mice are highly suscep-
tible, but gradually lose this susceptibility and
become increasingly resistant during the first
week. The data on response percentages within
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FiG. 19. Percentage of deaths in 21-day-old mice
infected intraperitoneally with Japanese B en-
cephalitis virus.

each age group can be interpreted as a continu-
ous distribution of Lps with a spread of about 3
logs, with the range of the Lps distribution (given
in pock-forming units) moving to larger doses
as the age increases, as indicated in Table 6.
The response data for the third group in Table 6
were plotted in Fig. 12.

One very exceptional response-probability
curve was found by Eckert et al. (18) for the
intravenous inoculation of the virus of avian
erythromyeloblastic leukosis in chickens, the
response being the appearance of primitive cells
in the blood. The curve of response probability
versus dose is extraordinarily flat, the prob-
ability increasing regularly with increasing
dose but requiring about 6 logs to increase from
20 to 809. This behavior has not been satis-
factorily explained; on the independent-action
model, it would indicate a continuous distribu-
tion of host susceptibility over an extremely
wide dose range.
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Birta-DEaTH MoODEL: DISTRIBUTIONS OF
TiME T0 RESPONSE

In the preceding discussion of response prob-
abilities, the only assumption made was that the
organisms (or viral particles) act independently.

TaABLE 4. Effect of age on susceptibility of chick
embryos to infection with Coccidioides immitis
strain 6212

2 g Per 1o
go Dead/
o Dose . eggs cenE
;r:b injected | Rt | oed. Weibull
2 Muench
5 180,000 10/10 | 100
18,000 10/10 | 100 794 800
1,800 7/9 77
180 0/4 0
6 180,000 10/10 | 100
18,000 9/9 100
1,800 7/10 | 70 676 800
180 2/9 22
7 180,000 8/8 | 100
18,000 5/9 55
1,800 3/10 | 30| 7,762 6,000
180 0/9 0
8 | 180,000 9/9 | 100 20% hosts
di~1
18,000 5/8 62 | 5,495/ 809 hosts
dz ~ 104
1,800 2/10 | 20
180 2/10 | 20
9 180,000 5/8 62
18,000 1/10 | 10 | 98,680 120,000
1,800 0/10 0
8 (1,400,000 9/9 | 100
140,000 9/9 100
14,000 10/10 | 100
1,400 2/10 | 20
140 3/10 | 30
14 2/10 | 20
1.4 2/9 22
0.14] 0/9 0

From this assumption alone, we cannot obtain
any information on the course of the infection,
nor information on the time required to obtain
an observable response. The term ‘response’”
will be used to denote the appearance of any
of the various observed symptoms that are listed
later in Table 7. By “time to response,” we
mean the time between challenge with an inocu-
lum and first appearance of the symptom; that
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is, time to response is equivalent to the variously
used terms “incubation period,” “latent period,”
“reaction time,” ‘“induction time,” or ‘‘time to
death.”

To the assumption of independent action, we
add now the simplest possible assumptions re-
garding the course of infection during the period
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symptom. The mathematical treatment of this
so-called birth-death model in the papers by
Saaty (50) and by Shortley (52) gives results
that describe the distribution of response times

before response—namely, that during this 95 4
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Fig. 20. Percentage of deaths in 8-day-old chick 2]
embryos after inoculation of Coccidioides immitis
by the yolk-sac route. .
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TABLE 5. Lethal response of guinea pigs inoculated

intradermally with Pasteurella pestis encapsulated

strain MP-6 in comparison with nonencapsulated
mutant strain M-23

DOSE IN ORGANISMS i
Fiag. 21. Percentage of deaths in guinea pigs after
intradermal infection of Pasteurella pestis MP 6.
(Compare with Fig. 22.)

Deaths/total Per cent mortality
Dose
(organisms) % .
MP-6 M-23 MP-6 | M-23 bt l/ |74
9
9 X 108 10/10 100 s /
9 X 107 10/10 100 I 0 y 1/
9 X 108 8/10 80 w30 7 7
9 X 108 10/10 100 %32 / /
9 X 10¢ 5/10 50 & 20l
9 X 103 10/10 3/10 100 30 -
9 X 102 10/10 5/10 100 50 20
9 X 10! 10/10 2/10 100 20 2 /
9.0 10/10 1/10 | 100 10 g s /
0.9 2/10 0/10 20 0 £ 3 |
0.09 0/10 0 % ' 10 10 10 10°  w0* 107

entire period the conditions that govern the
probabilities of organism birth (cell division)
and of organism death remain constant, inde-
pendent of time and of number of organisms.
During this period, as a result of chance, either
all organisms will disappear or the total number
of organisms will grow to a certain very large
size, N, at which time response is assumed to
occur, with the appearance of an observable
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F1c. 22. Percentage of deaths in guinea pigs after

intradermal injection of Pasteurella pestis M 23.
(Compare with Fig. 21.)

and its dependence on challenge dose, and which
are suitable for comparison with experimental
data.

We shall first describe the structure of the
birth-death model and shall then present the
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results of the mathematical analysis in some
detail. The model gives the same exponential
response-probability function we have discussed
in the preceding section. The model also gives
results on time to response that are in qualitative
agreement with the following experimental ob-
servations. Characteristically, the average time
to response decreases as the dose increases, with
an approximately linear relation between the
average time and the logarithm of the dose.
However, there is not a fixed time to response
for a particular dose; rather, the times are dis-
tributed over a considerable range. This range
is observed to be much wider for low doses that
result in long average times than for high doses
that result in short average times. Also, the
distribution of times to response, for a given dose,
is characteristically skewed and tails off toward
the longer times.

TaBLE 6. Range of LDy values in mice of various

ages
Age group Range of LDg*
7-23 hr 2 X 10-2 X 104
24-48 hr 1 X 10>-1 X 10°
3-5 days 1 X 10%-1 X 10¢
6-7 days 2 X 102 X 107

* Expressed in pock-forming units.

Structure of the Model

The birth-death model in the simple form we
shall describe in this section assumes that all
organisms are identical (complete organism
homogeneity), that all hosts are identical (com-
plete host homogeneity), and that the mechanism
of host-parasite interaction for each parasite in a
host is identical—this means that all organisms
initially locate at equivalent sites in a host. The
last assumption of site homogeneity is, for exam-
ple, not valid in respiratory infections where
organisms can land on quite different types of
tissue. The following section will give experi-
mental evidence that organism-site heteroge-
neity, as well as the host heterogeneity already
discussed, frequently exists.

In the birth-death model, during the period
under consideration, the individual organisms in
the inoculum act independently. Each organism
in the original inoculum and in the resulting popu-
lation of organisms in the host has a certain
probability, denoted by A, of dividing into two
organisms per unit of time, and a certain proba-
bility, denoted by u, of dying during this unit
time interval. The probabilities A and u are con-
sidered as constants throughout the period prior
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to symptomatic response or organism disappear-
ance, and are assumed to have the same value for
each organism, host, and site. Although we
realize that, for any one organism, these proba-
bilities must fluctuate in time as the process of
cell division goes on, we are working over a
period involving many such divisions and involv-
ing a large number of organisms and, hence, we
use a simple approximation in which these fluc-
tuations are smoothed out and average values
are employed.

The probability that any one organism will
divide or die in a short interval of time can be
interpreted as that proportion or fraction of the
total population which can be expected to divide
or die during that time. For example, if 1,000
bacteria are present in a host at a certain time
and 12 of them can be expected to divide and 8
can be expected to die during the next minute,
the value of A is 12/1,000 = 0.012 per min and
u is 8/1,000 = 0.008 per min. We note that, if
u were zero, the mean time to division would be
1/\, which in the above example is 83 min. Simi-
larly if A were zero, the mean time to death
would be 1/u, which in the example is 125 min.
If both X\ and u have values greater than zero,
there is competition between the processes of
birth and death; when \ is greater than u, the
mean time for a large colony to double in size
(called the doubling time or generation time) is
given by

loge 2 069 0.69

doubling time = N S (12)
where we introduce a to denote the net proba-
bility of growth:

a=\N—-u 19

In our example, & = 0.004/min and the doubling
time is 170 min. Defined in this way, o« is the
parameter that determines the exponential
growth rate: for large colonies, the average colony
size will increase in proportion to e .

In the birth-death model, the values of A and
u alone determine the probability of response for
any given challenge dose, but, to discuss time to
response, we must introduce an additional as-
sumption that determines a criterion for re-
sponse. This assumption is that response occurs
when the total number of organisms in the host
reaches some definite large number which we
designate by N. Thus, the period during which
the probabilities A and u of birth and death have
fixed values is assumed to be terminated either
when the population of organisms in the host
reaches zero and the infection dies out, or when
the population reaches size N, and a symptom



Vor. 29, 1965

appears. There is direct experimental evidence
that response does occur at an approximately
fixed number of organisms.

The birth-death model is said to be stochastic
or probabilistic, because the postulated course of
development of a disease has ‘“‘chance” factors
that make it impossible to predict the outcome
of any one particular case. Thus, for a given dose
of a given pathogen and a given host, the model
cannot predict the exact value of response time,
or even whether there will be a response. The
model can, however, predict the percentage of
hosts that will respond, predict the average time
of response for those responding, and predict the
distribution of times about the average, all as
functions of the size of the challenge dose. By
thus furnishing a “structure” for the analysis, the
model can utilize data obtained from certain
levels of challenge dose to predict the results to
be expected from any arbitrary dose level.

The basic structure of the birth-death model is
illustrated in Fig. 23. ‘In this figure, which is
highly schematic, the number of organisms in the
colony in a host is represented on the vertical
axis on a logarithmic scale, and time is repre-
sented on the horizontal axis on a linear scale.
The letter d on the vertical axis represents the
number of organisms in the initial challenge dose,
and N is the number of organisms required for
response. According to chance occurrences, the
number of organisms will either increase from d
to the large size N, and result in a response, or
the number will decrease to zero and no response
will result. The larger the number d in the initial
dose, the greater will be the probability that the
colony will increase to size N rather than de-
crease to size zero, and that a response will be
the result.

Figure 23 shows the possible courses of events
in six different hosts receiving the median infec-
tious dose do = IDs0, and also in six hosts receiving
a much greater dose d. Since for the median in-
fectious dose do the probability of response is
509, three hosts that receive this dose are as-
sumed to respond, and three are assumed not to
respond. For the much higher dose d, all six hosts
are assumed to respond.

The wavy character of the lines in Fig. 23 sug-
gests the elements of chance involved in the
birth-death process. These elements of chance
manifest themselves much more strongly when
the number of organisms is small than when it is
large. For a very large number of organisms, the
growth is almost exactly exponential, as repre-
sented by a straight line on the semilog plot of
Fig. 23. We can see from this behavior why the
three growth patterns from the median dose do
are likely to result in widely different response
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times, while those growing from the much larger
dose d will have response times differing only
slightly.

The lines in Fig. 23 are purely illustrative and
were not derived from the computations of the
birth-death model or from experimental data;
they are intended merely to illustrate schematic-
ally the behavior under the assumptions of the
model. If a group of experimental animals is in-
jected, each with the same dose dy or d of micro-
organisms under standard conditions, the growth
pattern of the pathogens in any one animal is
typified by one of the wavy lines in Fig. 23. If
and when the threshold N is reached, a response

DISTRIBUTION OF RESPONSE TIMES

NUMBER REQUIRED
FOR RESPONSE

A
\&._

HOSTS
SHOWING
RESPONSE

a

|t ——| \Q\

STANDARD
DEVIATION O

NUMBER OF ORGANISMS (LOG SCALE) wmmu-

HOSTS NOT RESPONDING

TIME e— AVERAGE
RESPONSE TIME

CHALLENGE t

Fic. 23. Course of birth and death (schematic).

TIME
OF

takes place. If a large group of animals is inocu-
lated, one cannot predict which ones will respond
nor at what time, but from test of such a group
one can determine the proportion that respond,
the mean or average response time #, and the
distribution of response times about this average.
Such “frequency distributions” are shown by the
curves drawn above the upper threshold line. A
statistical measure of the “width” of these fre-
quency distributions, called the standard devia-
tion and denoted by o, is also shown on these
plots. A “positive skewness,” or a tailing off
toward longer times, that is predicted by the
model is also indicated. This type of skewness is
typically observed.
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There is one assumption, not mentioned
earlier, that is explicitly introduced in performing
the mathematical analysis. This is the assump-
tion that the challenge dose d is small compared
with the number N of organisms required for
response—say less than one-tenth of N. This
assumption, which must be introduced to make
the analysis tractable, amounts to saying that the
model applies only when significant growth
occurs during an “incubation” period before the
response occurs. Thus, the model cannot be
expected to apply to cases of ‘“massive” doses
near to or above the value N.

Predictions of the Model

Probability of response. Because in the birth-
death model the organisms grow independently,
and because the number N at which the organ-
isms collectively cause infection is assumed large
compared with the initial dose d, the probability
of response is the same exponential function of
d/dy (equation I and Fig. 2) that applies to an
independent-action model. In addition, the
model gives an explicit relation between the
median infectious dose dy and the ratio u/A of
death to birth probabilities. The relation is

069
T 1=/

The smallest possible value of u/\ is zero. This
value occurs when u = 0, a situation in which
every organism grows and none dies. This situa-
tion, in which there is certainty of response
whenever there is at least one organism in the
inoculum, leads in 14 to the smallest possible
median infectious dose, dy = loge2 = 0.69
organism, as we have already discussed.

Values of u/\ greater than zero correspond to
higher values of do, with do growing very large as
u/\ approaches 1. Equation 14 is only applicable
when u is less than \; that is, when u/A < 1.
When the death probability u is greater than the
birth probability A, the birth-death model gives
zero probability of response—an inoculated
colony always dies out and has no chance of
growing to the large size N. In this discussion, we
must remember the explicit assumption in the
model that the challenge dose itself is small
compared with N.

It is convenient to have equation 14 also in a
form that gives u/\ as a function of do. Algebraic
manipulation of 14 gives the relation

7 0.69

N d

Distributions of time to response. In Fig. 24 we
give the curves, accurately computed from the

do

4

(15)
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model, that give the frequency distributions of
time to response. These curves show the relative
numbers of hosts responding in each unit of time
for various challenge doses. The curves all have
the same area, so they apply to hosts responding,
not to hosts challenged. For example, of 100 hosts
challenged with d = 128 dy, all 100 will usually
respond (see Fig. 2 for response probabilities),
with response times peaked as in the curve
farthest to the left in Fig. 24. If 100 hosts are
challenged with d = 16 dy, it is almost certain

| [
d/d, =128
t 19740 = 64
w
o
o
x
'
o —
E d/d, = 32
b3
2
z
S
Z d/dy =16
: |
] 1
\‘d/do =8
——T]zd/d, = 2
d/d; = 47 I
-d/d,_ =1
d/d, = 1/2
d/d, = 1/4
and 1/8
J N

TIME i
Fi1a. 24. Distributions of time to response.

that all 100 will respond, but the response times
will be distributed according to the wider curve
marked d/do = 16. This curve is about one-third
as high and three times as wide as the curve for
d/dy = 128, indicating, roughly speaking, re-
sponses spread over about three times the time
interval with, at the peak, only about one-third
as many responding in a given time interval—
say 1 hr. The curve for d/dy = 1 is even wider
and lower but would still give the distribution of
100 animals responding. Now, however, since the
response probability is only 50%, 200 hosts would
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have to be challenged, on the average, to obtain
the sample of 100 that respond. For even lower
doses, still larger numbers would have to be
challenged to obtain the sample that respond—
it is to the responding sample that the curves
apply.

Mathematical analysis demonstrates that the
shapes of the curves in Fig. 24 are independent
of the actual value of the median infectious dose
do; they depend only on the ratio d/do. This fea-
ture is very convenient because it permits de-
termination of these distribution curves by a
single set of computations and their representa-
tion on a single chart. However, the size of the
time unit on the plot is inversely proportional to
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ters, as well as to the additional parameter
related to skewness.

Before turning to this discussion, we note that
the curves of Fig. 24 exhibit the various charac-
teristics we have mentioned earlier. For doses
above do, the average time decreases approxi-
mately linearly with the logarithm of the dose,
moving in equal steps for each doubling of dose;
the width (standard deviation) of the curves
rapidly decreases with increasing dose; and there
is a skewness with the longer tail to the right. We
note that, on the contrary, for doses less than d
the curves rapidly approach coincidence so that
for such low doses the distribution of time to
response, the average time, and the standard

oL
| at=log (N/d ) + 021
X
SN
N
) at| = log (N/d_)—logg (d/d )
T
.7 6 -5 -4 -3 -2 -1 0 2 3 4 5 6 7
Ioge(d/do)-b
Tﬁ%ilfh'i‘i|l"é|%l 1 I 4 116‘64‘256’1024
ﬂil‘%‘éfi%f 8 32 128 512
d/d =

F16. 25. Mean or average time to response.

a = N — pu, which, according to equation 12,
determines the net rate at which growth takes
place, whereas the placement of the curves rela-
tive to the time of challenge depends on the ratio
N/do, which is related to the multiplication
factor required before response occurs. For these
reasons, the time unit and the time of challenge
are not'indicated in Fig. 24. Shortley (52) pre-
sented a detailed discussion of the appropriate
time scales. For our biological comparisons, it
will be simplest to describe these distributions in
terms of the average time to response and the
standard deviation of time to response that are
indicated on Fig. 23. These quantities, as func-
tions of d/d,, are suitable for direct comparison
with experimental data. Hence, we shall turn
next to a description of these statistical parame-

deviation rapidly approach constant asymptotic
values as the dose decreases.

Mean or average time to response. Figure 25
shows the behavior of the average time to re-
sponse, #, as a function of the ratio d/do. The
average considered is the arithmetic mean. If a
sample of hosts is tested at a given dose level,
the average is computed by adding the response
time of the hosts that do respond and dividing by
the number of hosts that do respond.

It is shown in Fig. 25 that for doses less than
do the average time to response is predicted to be
essentially constant. The reason for this con-
stancy is that for doses substantially less than do
there is very little probability of infection at all;
usually the progeny of all organisms die out. It
turns out mathematically that with such low
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doses, if the colony does succeed in growing to
large size and causing infection, there is a very
high probability that the large colony all repre-
sent the progeny of a single organism in the chal-
lenge dose; since the colony represents the
progeny of a single organism, there is no variation
in average time as the dose decreases—there is
only a strongly decreasing probability of any
infection at all.

In the region of doses above do, the curve
rapidly assumes the form of a linear decrease of
average time with increase in the logarithm of
dose, according to the relation

af = log.N — log.d

= loge(N/ds) — logu(d/d) 1®)
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rabbits, with response time expressed as the
number of days required for the development of
a dark-field positive lesion. The value of d, is
stated to be approximately two organisms. For
d greater than 2, the observations fit a linear rela-
tion of the form of equation 16 with adequate
accuracy. The bars in Fig. 26 show =1 sk of the
observed value of {.

From Fig. 26, we can illustrate the method of
computing the basic parameters \, u, and N of
the birth-death process. We have seen that N
represents the intercept of the straight line with
the horizontal axis, which, on Fig. 26, is at
N =~ 5 X 10® organisms. This value gives the
size to which the colony must grow before the
lesion appears.

[}
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F16. 26. Typical linear regression of mean times to response for doses above dy; the development of lesions

by intracutaneous syphilis in rabbits.

where & = N\ — u, as in equation 13. The origin
of time  is left indeterminate in Fig. 24, but must
be chosen so that { = 0 when d/dy = N/d,, as
indicated by equation 16. In other words, the
straight-line portion at the right of Fig. 25
crosses the axis of time at dose d = N.

By writing equation 16 in the form

at = 2.30 [logieN — loged], 17)

we see that, if {, and {, are the average times at
doses da and di,, o can be computed from the
relation

logm db —_ logm da

a =230 i1,

(18)

Figure 26 illustrates the behavior of the average
time to response in the region of doses greater
than do in an experiment by Magnuson and
Rosenau (37). The data are for intracutaneous
inoculation of syphilis (Spirochaete pallida) in

The net growth rate @ = X — u can be ob-
tained from the slope of the curve, as in equation
18. If we take doses d, and d, 7 logs apart as
indicated on Fig. 26, so that the numerator in
equation 18 is 7, we have

7 16.1
(30— 3)day 27 / day = 0.60/day

This value gives, according to equation 12,
doubling time = 1.2 days.

If we combine algebraically equations 73 and
14, we find that X is given in terms of « and d,
by the relation

a=230

Ny

0.69 (19)

In the case of Fig. 26, using dy = 2 and the value
of a computed above, we find, from equation 19,
A = 1.74/day. Correspondingly, we compute u
asu = N — a = 1.14/day.
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We note that, whereas o is obtainable with
considerable accuracy from the slope of the curve
in Fig. 26, the value of A (and hence of u) con-
tains, according to equation 19, the same un-
certainty as the value of do which, in many cases
like this one, is not known to a high degree of
accuracy.

Finally, in comparing Fig. 26 with Fig. 25, we
may ask for the predicted value of the constant
mean response time for doses well below dy = 2
in Fig. 26. This value is given by the formula
shown at the top of Fig. 25, which is applicable
for doses that are small compared with do. This
formula can be written as

_ 2.30 logio(N /do) + 0.21

a

o1

(20)

where d < do. In the case of our example of
Fig. 26, this relation gives

2.30 log1o(2.5 X 109 + 0.21

t= 0.60/day

= 33 days

as the constant average response time predicted
for very low doses.

By following through these same arguments,
with do assumed to be known from data on
response probabilities, the values of N, o, A, u, and
the mean time to response for low doses can be
obtained successively for any linear regression
similar to that in Fig. 26.

Standard deviation and skewness. As we have
stated previously, the standard deviation is a
statistical measure of the width of the time distri-
bution of response times. If the response times
are expressed in days, the standard deviation can
also be expressed in days and gives a standard
measure of the spread of response time. As an
example, for the dose 5 X 10? anthrax spores in
Fig. 7, 30 hosts were challenged and 20 died. The
histogram of Fig. 27 shows the distribution of
days of death. As we shall compute in detail
later, for this distribution, { = 2.4 days and
o = 1.4 days, as indicated in Fig. 27.

As we have seen, the parameter a, which de-
termines the net rate of growth, is appropriately
measured in day~!. The product a¢ is, thus,
dimensionless. For the birth-death model, the
parameter ao is determined purely by the ratio
d/do, and has the values given in Fig. 28. The
values of ao, and hence of ¢ itself, are predicted
to be essentially constant for doses less than d,
and to decrease rapidly for doses higher than d,.
This decrease is systematically observed. For
example, for the anthrax data of Fig. 7, ¢ de-
creases from 1.4 days at the dose 5 X 10? organ-
isms to about 0.1 day at the largest doses.

The skewness is a statistical measure of the
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asymmetry of a distribution such as that in
Fig. 27. In Fig. 27, the number of mice dying per
day clearly falls off less rapidly as we move to
the right of the day of maximal deaths than it
does as we move to the left. The distribution is
said to have its longer tail to the right, and sta-
tistically this corresponds to a positive value of
the skewness. A symmetrical curve would have

t

\

NUMBER DYING EACH DAY

DAYS AFTER CHALLENGE

Fi1a. 27. Distribution of time to death for intra-
peritoneal injection of 600 anthrax spores in mice.

zero skewness; one tailing off to the left would
have negative skewness.

Distributions of times to response are charac-
teristically observed to have positive skewness.
Skewness is a dimensionless quantity. The birth-
death model predicts that its value depends
purely on d/d,, with the dependence indicated by
the second curve in Fig. 28.

Table 7 shows the details of the computation
of estimates of Z, o, and skewness for the data in
the sample of Fig. 27. Let us compare the values
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predicted on Fig. 28 with those computed in
Table 6 for this example.

At the dose of 5 X 10? organisms in Fig. 7,
essentially all of the hosts responding will be of
the sensitive type having median lethal dose
dy = di = 25 organisms. Hence, for this dose,
d/de = 500/25 = 20. For this ratio, Fig. 28 pre-
dicts that ao will be about 0.4 and the skewness
about 0.9. The observed skewness, 0.93, is very
close to the predicted value. Such agreement of
skewness is frequently found. To compute aa, we
need to obtain a value of « from a plot similar to
that of Fig. 26. Such a plot gives a value of « of
approximately 6/day and hence an observed
value of ag ~ 8. This value is many times greater
than the value of 0.4 predicted by the model.
Observed values of as are always found to be
greater than those predicted. Even if the model
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parameters A, u, and the exponential growth rate
a = A — u. That discussion assumed complete
homogeneity.

Host homogeneity is required for the simple
birth-death model to apply. A Weibull response
plot shows the data of Fig. 26 to meet this
host-homogeneity criterion: 909 of the hosts are
sensitive, with do of the order of two organisms;
the other 109, are so resistant that almost none
responds for doses in the range plotted in Fig. 26,
so we have an essentially homogeneous host
group.

It is also necessary that the organisms be
homogeneous—and arrive at sites in the host that
are equivalent from the standpoint of factors
affecting organism growth and death. If, for ex-
ample, because of differences in virulence or of
host site, only 109 of the organisms are capable

P
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Fia. 28. Standard deviation and skewness of the frequency distribution of time to response.

is basically sound, greater standard deviations
would be expected in practice because of the fact
that the model assumes perfect homogeneity. All
sources of heterogeneity, which undoubtedly
exist, would be expected to widen, rather than
to narrow, the frequency distribution curve.
Heterogeneity in hosts, organisms, or organism
location in the host would lead to distributions of
values, not fixed values as assumed, of the basic
parameters \, u, o, and N, and it is readily seen
that such distributions of values can drastically
spread out the times to response.

BirtH-DEATH MODEL: COMPARISONS WITH
EXPERIMENT

We have seen, in the preceding pages, how the
linear relation between average response time
and log dose can be used, together with the value
of median infectious dose do, to obtain the

of growth after inoculation, then the value of «
given by equation 18 will be accurate for this 10%
of the organisms, but the value of A given by
equation 19 will come out too high by a factor of
10, as will the value of N.

Host heterogeneity is readily detected by the
methods described above in the section on the
independent-action model. Organism or site
heterogeneity is less readily detected, but is, as
we shall discuss presently, undoubtedly responsi-
ble for the large values of dy frequently observed,
and possibly for the initial decrease in number of
organisms that is also frequently observed in
direct counts. For this reason, we can have no
confidence in the value of N\ computed from
equation 19, nor in the corresponding value of u.

Table 8 summarizes the data that we have
found in which mean response time has been de-
termined as a function of challenge dose, and
which are adequate to determine a value of a
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(the exponential growth rate) from the slope of
a curve such as that in Fig. 26. This table in-
cludes 14 of the 16 cases listed by Meynell and
Meynell (40) as observed to give a linear relation
between f and log dose, as well as a considerable
number of additional cases. The table lists do, ,
and N (a and N/d, in the case of viruses), but
does not list computed values of A and u because
of uncertainties as to the interpretation of these
parameters, as discussed in detail below.

It is interesting to note in Table 8 that the
values of o are characteristically of the order of
magnitude of 1/day, which corresponds to a
doubling time of 0.69 day or 17 hr. Fhe largest
growth rate in the table is about 17 /day, which
occurs for pneumococei injected intraperitoneally

day. By actual count, the shortest observed
organism doubling times are of the order of
magnitude of 1 hr, corresponding to a value of
« of 17 /day, the fastest rate occurring in Table 8.
Values of N significantly larger than 17/day
would not be expected to occur.

A case in point, although not an extreme case,
is illustrated in Fig. 29. This figure shows another
set of data by Magnuson and his colleagues (38)
on intracutaneous syphilis in rabbits. Although
the Treponema pallidum is of the same strain as
that used in Fig. 26, where do was 2 organisms, a
Weibull plot of response percentages shows that
the value of 23 organisms given for the present
trials is acceptable, with some 5% of the hosts
having an even higher d,.

TABLE 7. Computation of estimates of mean time to response, standard deviation, and skewness, for the
data of Fig. 27

¢ (days) nt nit t-7 (-2 ne(t — 72 (t =18 ne(t — )%
0.5 2 1.0 - 1.9 3.61 7.22 — 6.86 — 13.72
1.5 8 12.0 - 0.9 0.81 6.48 - 0.73 - 5.8
2.5 5 12.5 + 0.1 0.01 0.05 + 0.00 0.00
3.5 1 3.5 1.1 1.21 1.21 + 1.33 + 1.33
4.5 3 13.5 2.1 4.41 13.23 + 9.26 + 27.78
5.5 1 5.5 3.1 9.61 9.61 + 29.79 + 29.79
n=23n =20 Zn(t — i) = _3)7.80 Sn(t — I)® = 39.34
En,(t — 1) _ n
Snd = 48.0d o = p—1 M= T Dm—2) 2)En¢(t — )3
_ Znd 37.80 _ 20
= = 24d =9 = 1.99 42 = {918 X 39.34
o= +109 =144d = 2.30 g3

Skewness = /o = /2.30/1.4 = 0.93

Standard error of { = o¢/4/n = 1.4/4/20 = 0.3 d

in mice; this value corresponds to a doubling time
of 1 hr, and is of the same order of magnitude as
the shortest doubling times observed by direct
counts in vitro or in vivo. The smallest value of
« in the table is for the very slow-growing bacillus
of human leprosy injected in the foot pads of
mice; this value is 0.8/month or 0.027 /day and
corresponds to a doubling time of 0.9 month.

Effects of Organism or Site Heterogenerty

There are many instances in the literature in
which very large values of median infectious dose
do occur, but in which the exponential growth
rate o has its characteristic value of the order of
1/day. In these cases, equation 19, A = doa/0.69,
gives a value of A that is untenably large from
the biological point of view—a value that may be
in the hundreds, thousands, or even millions per

From the value dy = 23 organisms and the
value @ = 0.63/day given by Fig. 29, we find
A =21.0/dayand u = A — a = 20.4/day. Even
for this nonextreme instance, these values
(A = 21.0/day, u = 20.4/day) are unacceptable.
A biological system cannot operate like clock-
work, with the small difference between large
values of A and u representing the exact net
growth rate. The computed values of A\ and u
must always represent some sort of averages over
distributions of values, with organisms, organism
environments, and time as variables. But even
a slight smearing out of the above “average”
values will give some situations in which u > A.
We remember that in this case, where u is greater
than A, the model gives no probability of the
inoculum growing to large size and, in fact, the
organisms will all die.
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We can give a much more satisfactory explana-
tion of the value dy ~ 20 organisms for these
trials, in comparison with the value dy ~ 2 organ-
isms in Fig. 26, by assuming that, in the particu-
lar inoculum used in these trials, only about 10%
of the organisms have A > u and are capable of
growing to colonies of large size, while 909, of
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F1a. 29. Mean time to appearance of lesion for
intracutaneous syphilis in rabbits (N =~ 2 X 108
organisms).
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F1c. 30. Fate of Pasteurella pestis in lungs of
aerosol-exposed guinea pigs.

the organisms die out. We are then back to
exactly the situation of Fig. 26 and obtain more
reasonable values of N and u, of the order of
magnitude of those given previously.

There is strong biological evidence that an
initial shrinkage in colony size (by a factor of 10
to 100 or more) does frequently occur before the
regular growth pattern sets in. For example,
Fig. 30 shows lung counts of guinea pigs immedi-

129

ately after inhalation of Pasteurella pestis strain
Alexander, and at subsequent times thereafter
(23). There is a drop in count for 6 hr and then
a regular exponential growth until death, at a
growth rate corresponding to @ = 4.2/day. The
drop lowers the effective dose at time zero by a
factor of 100. This drop is accompanied by a
greatly increased rate of phagocytosis by lung
macrophages. The bacteria cleared from the
lungs were demonstrated not to have migrated
to other parts of the guinea pig.

In other, unpublished work from the same
laboratory where the results in Fig. 30 were ob-
tained, the median lethal dose for respiratory in-
fection of guinea pigs with this organism was
found to be of the order of dy = 4,000 cells. Any
attempt to compute values of A and u using the
above values of a and do would give absurdly
large rates. However, the effective do must be
reduced by (i) the fraction of organisms inhaled
that do not lodge in suitable sites in the lungs
and (ii) the fraction lodged in the lungs that are
destroyed by phagocytosis, or other defense
mechanisms, in the early period after challenge.

Many other data of the type shown in Fig. 30,
indicating a strong initial decrease in colony size,
are to be found in the biological literature, both
for bacteria (5, 20) and for viruses (1, 39).

We conclude from our literature survey that
there are few systems for which meaningful values
of A and u can be obtained. In fact, the only
clear-cut cases are those in which d, is found to
be 0.69 organisms, in which case we are sure that
A=aandu = 0.

Constancy of Mean Time to Response at Low Doses

Ezxpertments on Salmonella typhimurium. We
have found just one set of experiments, by
Meynell and Meynell (40), designed specifically
to check the constancy of the mean response time
(time to death in this case) for doses below the
median infectious dose. Unfortunately, in these
experiments, there is strong host heterogeneity
that masks the effect being sought. We cannot
agree with the authors that these experiments
demonstrate approximate constancy of mean
response time at doses below the Lps.

Figure 31 shows the response percentages for
experiment 1 of this set of experiments on the
intraperitoneal injection of mice by S. typhi-
murtum, the response being death. For these
data, Meynell and Meynell give dy = 320 organ-
isms. However, it is clear from Fig. 31 that the
hosts fall into two groups. Approximately 449,
of the hosts are susceptible, with d; very small.
Lack of data at doses lower than 5.1 organisms
precludes fixing the left-hand asymptote, but the
smallest possible d, is 0.69 organisms; curves are
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drawn both for d;, = 0.69 and d; = 3; the true
value of d; would seem to lie between these
limits. The position of the upper asymptote gives
a value of dy, for the resistant hosts, in the neigh-
borhood of 6,000 organisms.

For doses below about 600 organisms (0.1 d,),
substantially all of the observed responses will
result from the susceptible group of hosts. The
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Fia. 31. Percentage of deaths in mice infected
intraperitoneally with Salmonella typhimurium.
Ezxperiment 1 of Meynell and Meynell (40).
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F1G. 32. Mean response times for the data of Fig.
31.

observed mean times to response, with +1 sk
indicated, are shown in Fig. 32. Since there is
only 689, probability that the true mean is
within +1 sE of the observed mean, the data for
the first four points of Fig. 32 are not inconsistent
with the indicated straight line, of some such
slope as would be expected. There is indication of
change of slope of this line when we enter the
regime of resistant hosts, at about 6,000 organ-
isms, and another change in slope, corresponding

SHORTLEY AND WILKINS
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to an increase in growth rate, at about 108
organisms.

The experiment described above had other
interesting features. Terminal viable counts were
made, shortly after death, on mice inoculated at
each dosage level indicated in Fig. 31 and 32; all
terminal counts were approximately constant in
the range from about 10® to 10° organisms, re-
gardless of size of challenge dose. This is also the
range in which the straight line at the right of
Fig. 32 would cross the axis { = 0. Counts were
also made on sacrificed mice at various times
after inoculation. In mice challenged with 8 X 104
and 2 X 10° organisms (in the 1009, response
region in Fig. 31, the colony growth patterns
were entirely consistent with the rate of growth
given by a = 2.0/day at the right of Fig. 32. In
mice challenged with 3 X 10° organisms, the
general growth rate seemed to be slower, and the
mice seemed to divide into two groups, those that
would presumably have died and those that
would have survived. However the colony sizes
in the latter group seemed to increase for a few
days and then to decrease—a behavior in-
consistent with a model in which conditions are
independent of time or colony size.

Meynell and Meynell (40) also give data for
their experiments 2 and 3, which were replicates
with combined response percentages which have
already been shown in the three-group curve of
Fig. 9. Their data on average response times are
again so badly scattered that their conclusion
that this time tends to constancy for doses less
than their Lpg of 3.2 X 10° organisms seems not
to be well supported.

Ezxperiments on papilloma virus. The section on
the independent-action model contained examples
showing that viruses, as well as bacteria, can give
response-probability curves that are described by
simple exponentials and, hence, conform to the
independent-action model.

The data on times to response for viral infec-
tions that are listed in Table 8 conform to the
predictions of the birth-death model about as
well as do the data for bacteria. Linear relations
between I and logd are characteristically ob-
served; the distribution of times is skewed to the
right; and standard deviations decrease with
increasing dose but are characteristically larger
than those predicted.

Figure 33 shows the average time for develop-
ment of rabbit warts after challenge with various
quantities of papilloma virus by means of skin
scarification (10). The value of do given on this
figure was determined from a separate set of
experiments (11) that led to response percentages
that indicate the hosts are 95% homogeneous.
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The two sets of experiments are believed by the
authors to represent comparable data, because
purified papilloma virus protein was used and
identical experimental techniques were employed.
If the data are indeed comparable, then, with
statistical significance, the points on Fig. 33 for
doses less than d, fail to approach a constant
mean response time, as is predicted by the
birth-death model.

Other explanations of the above discrepancy
are possible, and this isolated example is not to
be regarded as a conclusive test. However, there
is serious question as to whether the basic as-
sumptions of the birth-death model would be
expected to apply to viruses, because the process
of replication of viruses is considerably more
complex and inherently different from the process
of binary fission of bacteria. A detailed model for
the behavior of viral particles should be based on
an assumption different from that of binary fis-
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F1G. 33. Mean time to development of warts in
rabbits challenged with papilloma virus by skin
scarification.

sion, which was used to obtain the mathematical
results described in the action on the birth-death
model. Changes in the detailed assumptions
regarding the mechanism of replication would be
expected to result in significant changes in the
predictions of a mathematical model in the region
of low doses and in little change in the character
of the predictions for doses well above d,.

Vartation of Growth Rate with Colony Size

If the slope a of the curve in the plots of &
versus logd is interpreted as the exponential
growth parameter, as evidence seems to justify,
then, in cases where the observed response is
death, it is frequently observed that the growth
parameter changes with the number of organisms.
An example in which « seems definitely to in-
crease when the inoculum gets to within a factor
of 10 of that at death has already been exhibited
in Fig. 32. A similar increase is shown in the
U.S. Army data on tularemia given in Fig. 34.

INDEPENDENT-ACTION AND BIRTH-DEATH MODELS
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As noted in Table 8, a similar phenomenon
occurs for anthrax in mice and hamsters.

The reverse behavior is sometimes observed,
with an apparently slower growth rate at large
numbers of organisms; Fig. 35 shows an example
from U.S. Army data. This figure applies to a
different strain of P. tularensis than that used in
Fig. 34. Four trials were run, and there was an
apparent change in virulence after trial II such
that the do increased from its minimal possible
value of 0.69 organism for trials I and II to 1,700
and 1,400 organisms for trials IIT and IV, respec-
tively. Trials I and II show an approximately
constant rate of growth at a about 4.5/day out
to an N of about 10", Trials III and IV show
distinctly longer times to death, but about the
same growth rate as trials I and II out to doses
of about 108, and then an apparently slower
growth rate at o about 1.3/day to a value of N
approximately the same as that in trials I and II.
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FiG. 34. Mean time to death of mice infected in-
traperitoneally with Pasteurella turlarensis Schu
(do = 0.76 organism).

There is evidence of similar behavior in the
work of Marshall and Gerone (39) on variola
virus in suckling mice. Their direct counts, in
terms of pock-forming units, after the initial
decrease in virus, show rapid growth for 3 or 4
days, then an essentially constant count for 3 or
4 days until death.

Distributions of Tivme to Response

Figure 36 shows a plot of unpublished data
taken by V. W. Andrew and J. C. Wagner on day
of death of guinea pigs inoculated intraperi-
toneally with whole-egg suspensions of the
rickettsia Coxiella burnetiz, the causative agent of
Q fever. The plot shows, for various dose levels,
the number of hosts responding on each day,
given as a percentage of all the hosts that re-
spond. The superposed hatched curves give the
percentage response each day computed from
the birth-death model, using the values of a and
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N/d, obtained from plots similar to those we
have discussed, entered in tables given by
Shortley (52). A Weibull plot of the response per-
centages shows the hosts to be 959, homogene-
ous with the value of dy given by the experi-
menters, the balance of the hosts being com-
pletely resistant to the dose range in question.
The relation between { and logd is excellently
linear. '

The predicted distributions of time to death
for the three highest doses in Fig. 36 are very
narrow, with o values of 0.1 day or less according
to Fig. 28. Hence, the hatched curves are plotted
to show all of the deaths occurring on the same
day. For d/dy = 15, the predicted deaths are
spread over 2 days, and for d/dy = 1.5, they are
spread over 4 days.
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nomena observed in naturally occurring disease.
These data are those of Tigertt and Benenson
(54) on respiratory Q fever in man. This set of
data is of importance in that it demonstrates
conclusively that the naturally occurring disease
results from a minimal dose, probably of the
order of dy or less.

A plot of mean incubation period as a function
of dose is given in Fig. 39. The incubation period
is defined as the time between respiratory chal-
lenge and the onset of a persistent temperature
above 100 F. The data are meager; for example,
for d/dy = 1, there were only two cases of infec-
tion, both with incubation period of 17 days; for
other points, there were three or four cases and
it was possible to determine a crude value of the
standard error of the mean time. Nevertheless,
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Fic. 35. Mean time to death of mice infected intraperitoneally with Pasteurella tularensis Church.

The set of curves in Fig. 36 represents the best
detailed agreement of the birth-death model
with experiment that we have found.

Figures 37 and 38 show additional examples of
observed response-time distributions, together
with observed values of ao and skewness suitable
for comparison with the predictions of Fig. 28.
Figure 37 represents data on tularemia in mice
(2), and Fig. 38 shows the rabbit-wart data
already discussed in connection with Fig. 33
(10).

As pointed out earlier, the observed values of
ao are generally much too large, whereas the
values of skewness are in reasonable agreement
with prediction.

Comparison with Naturally Occurring Disease

There is one set of data available that permits
comparison of the birth-death model with phe-

the data are sufficiently good to obtain a value
of @ ~ 1.2/day, and of N/do =~ 10°.

From these values of a and N /d,, and Table 1
of the previous paper (52), we can plot the theo-
retical frequency distribution of incubation
periods for d/dy = 1 (Fig. 40). As indicated in
Fig. 24, this same curve will represent closely the
distribution for any lower dose.

We also show in Fig. 40 a summary of obser-
vations on the incubation period of naturally
occurring Q fever, taken from the review by
Huebner et al. (29). It will be noted that, typi-
cally, the observed times are spread over a wider
range than are those predicted by the theory.
However, the fact that the shortest observed
incubation period is 13 days, whereas Tigertt
and Benenson observed one period of 12 days
with a dose as low as d/dy = 15, makes it ap-
parent that the natural infection occurs from
challenge with a very low dose.
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We offer these data as justification for the
hypothesis that naturally occurring respiratory
infections arise from doses in the vicinity of do or
less and that this fact results in the rather well-
defined minimal incubation periods that are ob-
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the factors affecting susceptibility and resistance
are poorly understood.

Conventional laboratory and statistical tech-
niques have failed to recognize and adjust for
host heterogeneity. It is suggested that the de-
tailed study of the reasons for host heterogeneity
may give useful clues to the broader area of

100 — . . . .
determination of the factors influencing sus-
751 ceptibility.
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Fig. 36. Distributions of time to death for guinea
pigs inoculated intraperitoneally with Q fever—
comparison of experiment (open bars) with model
(cross-hatched bars).

served. This hypothesis needs to be checked for
data on respiratory infections other than Q fever.

SuGGESTED RESEARCH TooLs

One of the least-understood periods in the
course of infectious disease lies between the
initial inoculation with a dose of organisms and
the appearance of the first symptoms of disease,
or the lack of appearance thereof. In particular,

TIME TO DEATH IN HOURS =
SACRIFICE AT 96 HOURS

Fia. 37. Distributions of time to death in mice
infected intraperitoneally with Pasteurella tularen-
sis (do = 0.69 organism).

Research is needed along a variety of lines to
identify genetically controlled or physiological
factors of defense against infective -agents. In
this section, we suggest avenues of approach that
utilize the analytical techniques described in the
preceding sections.

Utilization of ““‘Shelf”’ Behavior to Study Sensttivity
and Reststance Factors

When the response-probability curve has a
definite shelf, as in Fig. 41, which repeats the
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anthrax curve of Fig. 7, the independent-action
model attributes the two-group behavior to a
division of the hosts into two groups, irrespective
of any heterogeneity there may be in organism
behavior.

On any model, it is difficult to attribute a
behavior such as that in Fig. 41 to other than
host factors. One cannot reasonably attribute
this behavior to organism differences. Even if a
fraction of the organisms are of enhanced viru-

d/do=2500 ac=n
SKEWNESS=0.88
d/ds=80 ao=16
SKEWNESS=1.05
N
aoc=21
d/dg=25 I SKEWNESS=0.65
T T T
° 5 10 15 20 25 30 35

DAYS momm—-

Fig. 38. Distributions of time to development of
warts in rabbits challenged with papilloma virus
by skin scarification.
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Fia. 39. Mean incubation time of respiratory Q
fever in man.

lence, the number of these virulent organisms
increases continuously as we move from left to
right, and it seems impossible to account for a
response probability that remains constant after
the dose of these virulent organisms reaches a
certain size, thus producing a shelf. The only
reasonable way of accounting for the shelf is the
assumption that 659, of the hosts are susceptible
and respond to a low dose, whereas the other 359,
are resistant and require a high dose. The only
other conceivable assumption is the far-fetched
one of assuming that 659, of the hosts were
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properly inoculated in the proper region, and
that the inoculum was consistently maladminis-
tered in the other 359, of the hosts, for example
subcutaneously instead of intraperitoneally and
that the subcutaneous lethal dose is higher than
the intraperitoneal.

If we accept the reality of host differences, then
a curve of the type in Fig. 41 gives us the possi-
bility of separating the resistant from the
susceptible hosts on the basis of their response to
a single selected dose. For example, a dose of
3 X 102 organisms will kill substantially all of
the susceptible hosts, whereas substantially all of
the resistant hosts will live.

This argument leads to the possibility of de-
termining the host factors that are related to the
difference in susceptibility by (i) making indi-
vidual host measurements prior to inoculation,
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F1a. 40. Comparison of theoretical incubation-
period distribution for d/d¢ = 1 with natural ob-
servations of Q fever in man.

(ii) carefully labeling the hosts, (iii) subjecting
them to challenge at the same selected dose, and
later (iv) correlating the response with the meas-
ured host characteristics.

It is recommended that the above-described
tool be carefully explored as a means of solving
the puzzle of resistance and susceptibility fre-
quently observed in apparently homogeneous
host groups, and obtaining further insight into
the general problem of factors influencing
susceptibility.

Utilization of Host Age and Heterogeneity to Study
Defense Mechantsms

During the course of this study, we have been
impressed with the number of cases in which
young animals responded homogeneously and
older ones heterogeneously. In Table 4 and Fig.
20, this phenomenon is shown in chick embryos
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infected with Coccidioides tmmitis; in Table 3 the
same phenomenon is shown to occur in mice
challenged by extraneural routes with neuro-
tropic viruses. In general, the change from
homogeneity to heterogeneity occurs within a
relatively short time interval, e.g., in an interval
of 24 to 48 hr for chick embryos. Since an under-
standing of the factors that influence the varia-
tion of susceptibility with age is of fundamental
importance to all aspects of infectious diseases,
this section will attempt to structure some re-
search problems in this area.
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more difficult and challenging aspect. A number
of suggestions will be made which we hope will
encourage research in this area.

The chick embryo has been a favorite labora-
tory host for many years, as it is highly
susceptible to almost all of the known pathogens.
Through the efforts of embryologists, histologists,
and biochemists, more is probably known about
the chick embryo than about any other host.
There has been, however, little effort to marry
this vast backlog of information to the events
occurring during experimental infections. It is
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F1ag. 41. Curve of Fig. 7 repeated.

It has been known for some time that young
animals are more susceptible to infection than
older ones. This phenomenon is particularly
true for viral diseases, as is brought out in the
review by Siegel (53). However, research on the
problem of susceptibility as a function of age has
been hampered by the lack of (i) a technique for
identifying host heterogeneity, and (ii) specific
experiments to investigate host-defense factors.
The first requirement has been partially met by
the technique described in the section on the
independent-action model for identifying host
heterogeneity. The second problem of designing
experiments to study host-defense factors is the

known, for example, that age of the chick em-
bryo at the time of challenge markedly influences
susceptibility. In the case of Coccidioides immitis,
we noted that embryos up to 7 days of age were
homogeneously susceptible to the organism.
When challenged at 8 days of age, the hosts were
heterogeneous and two groups were identified,
one group with increased susceptibility and the
other group resistant. By the ninth day, the
embryos were almost completely resistant. It is
not surprising that susceptibility in the embryo
changes within a matter of hours, when one con-
siders that complete embryonic development
takes place in about 500 hr. However, of im-
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portance is the identification of the particular
changes that take place between the seventh
and ninth days, and which make some embryos
susceptible and others resistant to the infection.
It would appear that a logical attack on this
problem would be a comprehensive review of all
available data on the chick embryo. Special at-
tention should be paid to anatomical and cellular
changes and alterations in biochemistry that
occur from day to day. In parallel with this sur-
vey, information on the nutritional require-
ments, biochemistry, and virulence factors of the
pathogen should be collected. The analysis of
this information would then attempt to relate
changes in the developing embryo with specific
characteristics of the pathogen. As an example,
it is possible that, at a certain age of the embryo,
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Tissue culture is an ideal system for studying
factors of susceptibility and resistance at the
cellular level, especially for viral diseases. If one
could demonstrate heterogeneity in tissue cultures
infected with viruses, he would have a potentially
powerful tool in looking for factors related to
susceptibility and resistance. By examining such
heterogeneous cultures with biochemical or
immunochemical techniques, it may be possible
to relate alterations in cell metabolism with re-
sistance. However, in a limited review of the
literature, we have found that dose-response
studies in tissue culture with viral agents always
give a linear plot on the Weibull scale, indicating
a homogeneous system. Additional dose-response
studies with tissue culture and viruses are needed
in the following areas: (i) studies using different
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substrates conducive to the growth of the path-
ogen or for the expression of virulence are altered
or disappear so that susceptibility is reduced.
Intuitively, one would not expect these altera-
tions to occur simultaneously at exactly the
same age of development. Rather, during the
transition period between susceptibility and
resistance, individual differences could account
for the fact that some embryos are sensitive and
others are resistant. There is also the strong
possibility that all embryos were not hatched at
exactly the same time and that this difference
could help account for the host heterogeneity
observed during the period in which resistance is
developing. It is felt that a review of the avail-
able data would prevent rediscovery of known
information, give clues to mechanisms involved,
and aid in the generating of useful hypotheses
to be tested in the laboratory.

strains of cell lines infected with a wide spectrum
of viruses; (ii) dose-response data from tissue
cultures of different ages at the time of challenge;
(iii) use of cell lines from hosts naturally resistant
to the viruses.

Another important application of tissue culture
would be to use tissue cultures derived from hosts
of different ages. The suggestion for this program
came from the recent investigations of Nir and
Goldwasser (42), who observed that the increase
of resistance to West Nile virus with age was a
general phenomenon, no matter what routes of
inoculation were used. It was pointed out in
the section on the birth-death model that young
mice were susceptible to ncurotropic viruses
given by extraneural routes; with increasing age,
the animals responded heterogeneously until
about 40 days of age, when they were completely
resistant. The purpose of this suggested program
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is to attempt to mimic, in a tissue-culture system,
the homogeneity and heterogeneity observed in
the intact animal. The first step would be to de-
velop tissue-culture systems from a variety of
different tissue sites. These tissues would come
from the host at different ages, e.g., from 3-, 25-,
40-, and 200-day-old mice. The next step would
be to challenge the tissue system with one of the
neurotropic viruses. Dose-response data would
be collected and analyzed. Such a study might
cast interesting light on the influence of age on
susceptibility to viral diseases.

AprpPENDIX: 509, CONFIDENCE LiMmiTs

For the small sample sizes usually used in deter-
mining response percentages, we have found the
50% confidence limits to give the most useful in-
dication of the statistical accuracy of the observed
percentage. For these limits there is at least a 509,
chance that the true population percentage lies
between the limits, at most a 25%, chance that it
lies above the upper limit, and at most a 259,
chance that it lies below the lower limit. Where the
response is 0 or 100%, there is at least a 759, chance
that the true percentage lies between the limits.

These limits give a usable indication of the ac-
curacy with which a plotted curve should fit the
observed data. It is a ‘‘good bet,” i.e., there is a
better than 509, chance, that the curve will pass
between the limits. Use of the more common 95
or 999, confidence limits gives, for small samples,
limits so far apart as to be much less useful.

For convenience, we give in Table 9 the 509
confidence limits for a range of small samples. The
table is complete up to sample size equal to 30,
because the number (n) heading the columns can
be either the number that respond or the number
that do not respond. Thus, if 10 of 30 respond, we
have confidence limits for response of P, = 26
and P; = 419, as read directly in the column n
= 10 and the line N = 30. On the other hand, if
20 of 30 respond, we note that 10 do not respond,
so we have 26 and 419, confidence limits for non-
response, or 59 and 749, confidence limits for
response.

For sample sizes larger than 30, the confidence
limits can be obtained from Fig. 42, which shows
the percentage to be added to the observed per-
centage to obtain P., or subtracted to obtain P,,
for various sample sizes N.
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